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Two methods of obtaining kinetic parameters from derivative thermoanalytical
curves are proposed. The methods are based on the general form of kinetic formulae and
are applicable to general types of reactions governed by a single activation energy. One
method utilizes the linear relation between peak temperature and heating rate in order
to estimate the activation energy, and only the information of the rate of conversion
versus the temperature is necessary. The other method needs the information of both
the conversion and the rate of conversion versus the temperature, and the Arrhenius
plot is made for an assumed kinetic mechanism,

Various types of thermal analysis have been applied in almost all fields of
material research. The thermoanalytical method, in which the properties of a
sample heated at a constant rate of heating are observed continuously, is an
effective method when the thermal response time is large compared with the rate
of the process and considerable change occurs during the period of heating the
sample up to the desired temperature in an isothermal measurement. For kinetic
investigation of the pyrolysis of a substance, thermogravimetry has been utilized
mainly, and many methods of obtaining kinetic parameters from thermogravi-
metric data have been proposed. These have been thoroughly reviewed by Flynn
and Wall [1).

Recently mass-spectrometric thermal analysis (MTA) was proposed [2] and
has been applied to the thermal degradation of polymeric materials [3—6].
This technique has some advantages over thermogravimetry since the volatilized
products can be identified by mass-spectroscopy and the rate of the volatilization
of each product is also recorded simultaneously. Thus, we can obtain kinetic infor-
mation as well as a knowledge of the products, and if the reaction proceeds in
parallel reactions, these can be distinguished by identification of the products;
this is not possible with thermogravimetry.

However, a method of kinetic analysis of such derivative types of thermoana-
lytical curves as are obtained by MTA and differential scanning calorimetry
(DSC) has not yet been proposed. Methods of kinetic analysis using data of both
the conversion and the rate of conversion are reported for thermogravimetry,
but these are only applicable to reactions of the n-th order, and hence can-
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not be applied to high polymers, some of which are decomposed by other mech-
anisms such as random degradation, in which the rate of scission is followed
by a first order reaction. The scission occurs at random points of the main-
chain in equal probability, and the rates of volatilization of the products are
quite different from that of the first-order reaction. Moreover, these methods
need data of both conversion and rate of conversion In a previous paper [7],
the author proposed a method of kinetic analysis of thermogravimetric data which
has wide applicability and needs only data of conversion. However, although
we can observe the rate of conversion by MTA and DSC, integration of the
derivative curve is not always equal to the conversion, because of the presence
of an additional minor reaction, especially when the latter becomes dominant
as the temperature is raised.

In the present paper, methods of kinetic analysis of derivative curves are
proposed which are also applicable to the above-mentioned complex process.
Some of the methods are examined by using the derivative curve calculated
theoretically by machine.

Theoretical considerations

In thermal analysis, properties of the sample, P, or the rate of change of the
properties, dP/dt (or dP/dT), are recorded as a function of temperature, 7', or
time, z. In order to estimate the kinetic parameters with thermal analysis, the
properties measured should be independent of the temperature and the exper-
imental time scale, and depend only on the structural quantity of the sample, x.
Hence, propetties such as viscoelastic or dielectric properties are not suitable
for this purpose. The conversion, C, which is equal to (P — Py)/(P,, — Py), is
a function of x:

C=fx Y]

In thermal analysis we cannot utilize the observations of the change of other
properties, such as volume in dynamic dilatometry and relative modulus in
torsional braid analysis, since the volume and modulus depend on the tempera-
ture and the experimental time scale, as well as on the structure. The kinetic
parameters cannot be obtained unless we can obtain or derive the structural
quantity, x, from these measurements. The modulus in the rubbery region may
be utilized for this purpose, since the ratio of the modulus to the temperature
depends only on the cross-linking density of the polymer.

The structural quantity is assumed to change following ordinary reaction
kinetics:

dx/dt = A exp (—AE/RT) g(x) )
where A, AE and R are the frequency factor, the activation energy and the gas
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constant, respectively. The above assumption may generally hold. The tempera-
ture changes linearly:

T=T0+at (3)

where T, and a are the initial temperature and the rate of heating (or cooling),
respectively.
In the previous paper [7], the anthor derived C as a function of T

x i
J /dx_ - A J exp (—AE/RT) d: 4
g(x)
0 0
G(x) = A0 ()

X
where G(x) equals j" dx/g(x) and © was defined as the reduced time [7]. When
b

the temperature is increased at a constant rate and the reaction barely occurs
at the initial temperature, @ is given by the following equation:

o AE [4E ¢
i (ﬁ] ©
where the p-function is given by:
y
exp (— ¥)
) f e ™
If y is larger than 15, then the following approximation can be applied:
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and
log p(y) = —2.315 — 0.4567y C)]

The approximation may be applicable to the ordinary reaction, since y is usually
greater than 15.

Fig. 1. The relation between the conversion, C, and AO for the reactions of the n-th order;
a) Oth, b) 0.5th, ¢) Ist, d) 1.5th, e) 2nd, f) 3rd

From Egs (1) and (5), we can derive the relation between P and 40, because
the relation between C and g(x) is equal to the relation between C and AO.
The relations between C and 4@ are dependent only on the functions f and g,
i.e. the mechanism of the reaction and the relation of P with x, and they can be
theoretically derived. Some of the typical relations are shown in Figs 1* and 2.
For the weight change in the random degradation of a high polymer, C is given

by Simha and Wall [8]:

1—C=( - x)L—1[1 + x(iv._il)%;l_)] (10)
dx AE |
-5=A6Xp(—ﬁJ(1~x) a1

* Similar curves are shown in the previous paper. However, the present graphs are revised

ones.
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where x, N and L are the fraction of bonds broken, the initial degree of poly-
merization and the least length of the polymer not volatilized, respectively. The
right side of Eq.(10) is approximately equal to (1 — x)&-9[1 + (L — 1) x],
since L is negligibly small compared with N. The relations between C and x are

= 100~

%)

! —

[

8ol
80|
40/
20

Fig. 2. The relation between the conversion, C, and 40 for the random degradation of
high polymers; from right to left, L = 2,3,4,5,6,7 and 8

obtained by resolving the equation for a given conversion by using Newton’s
method of approximation; they are shown in Fig. 3. Utilizing the relations in
Fig. 3, the curves in Fig. 2 can be drawn. Thus, we can obtain the theoretical
integral types of curve for given values of the kinetic parameters of 4 and
AE and a given mechanism of f and g, by using these theoretical relations and
Eq. (8).

On the other hand, the similar theoretical relations of derivative type are also
derived:

dc  df(x)  dx

dde = dx  d4e (12)
_ Y dx o dr
o dx dr  d4e (13)
B df(x
= 9(0) =3 (14)
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because
dA®/dt = A exp (—AE/RT) (15)

Thus, the theoretical relations between dC/d460 and C are derived from Eqs (1)
and (14). The theoretical relations between dC/dA® and 4O are derived from
Eqs (5) and (14). These relations are the theoretical ones depending only on the
functions fand g.

The derivative curves are similarly obtained for a particular set of the kinetic
parameters, because

dc_ dC d46
dr ~ d4e d17

AE) - df()
o0 2 (16)

=A exp[—

x,fractional bond breakage

oV ] ; L
0 02 04 06 08 i

Fig. 3. The relation between C and x for the random degradation of high polymers

For the random degradation of high polymers, the weight changes are shown
above, and the rates of weight loss can be calculated by using the above equa-
tions, but the theoretical relations of the volatilization rate of each product
must be known, since in MTA and evclved gas analysis one observes not
the rate of the total weight change but the volatilization rates of the individual
products.

Now let us consider the probability of the formation of each product. For the
random degradation of high polymers, the products of the repeating unit from
one to L. — 1 are formed. The probabilities of the formation of each product
from a polymer larger than (2L — 1)-mer are equal to each other, since the i-th
bond from the end should be broken for the volatilization of the i-mer i < L — 1},
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and the number of such bonds to be broken is two for each product. The prob-
abilities of formation of each product from the j-mer (L <j < 2L — 1) must
be considered. A simple approach is made after Mejzler et al. [9]. If the i-th bond

dC/dA®

[ 02 04 06 08 0
¢

Fig. 4. The relation between dC/d4A® and C for the reaction of the order indicated in the
Figure

dC/dA®

Fig. 5. The relation_between dC/dA® and C for the random degradation of high polymers
with L indicated in the Figure
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from one end is broken, the i-mer and (j — 7)-mer are produced. If the i-th bond
from the other end is broken, the situation is the same. If the i-th bond from
the ends of the (2i)-mer is broken, two molecules of the i-mer are formed by the
breaking of one bond. Thus, the number of ways of producing i-mer from j-mer
is independent of i and equal to 2. As the probability of breaking is equal for all
bonds, the probabilities of formation of the volatilized products are equal to
each other, and the conversion of volatilized products corresponds to the weight
change of Eq. (9).

g dC/dAQ —=

-2 -1 0

gre |

-‘——‘—»

Fig. 6. The relation between dC/dA® and .40 for the reaction of the order indicated in
the Figure

Hence, dC/d4© can be derived for the volatilization rate in the random
degradation of high polymers.

For some of the typical cases, dC/d40 is shown as functions of 4@ and C
in Figs 3, 4, 5 and 6 and in Table 1.

Now let us consider the peak of the curve. Shulman and Lochte {10]
suggested that the logarithm of the heating rate is in a linear relation with the
reciprocal value of the peak absolute temperature in first order reactions and that
the activation energy can be estimated from the slope. This was based on two
facts: the conversion at the peak is almost constant and independent of the heat-
ing rate, as shown by Horowitz and Metzger [11]; and the logarithm of the
heating rate is in a linear relation with the reciprocal absolute temperature for
the given conversion as suggested by the author [7].
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On the other hand, Murray and White [12] pointed out another linear rela-
tionship between the logarithm of the heating rate divided by the square of the
peak absolute temperature and the reciprocal peak absolute temperature for first
order reactions. Kissinger [13] suggested that the linear relationship is also appli-
cable to reactions of different order for differential thermal analysis (DTA) data.

However, the above-mentioned relationships hold for wider varieties of reac-
tion, as elucidated below, but the relations cannot generally be applied for
DTA data, as seen in the discussion.

At the peak:

d*c
then:
AE [df(x) A AE [ dg(x) “df(x)
’m[zﬁ }* a P (‘ "E?][ dx ] dx }*
d*(x) B
om0 0

where suffix m denotes the peak. If the following approximation is made (the
approximation is examined by Doyle [14]):

p(¥) = exp (—y)/y* (19
then:
ART: | AE:
aAE CXp | — Efn—zJ - A@m - G(xm) (20)

Thus, Eq. (18) reduces to the following equation containing only x,,:

df{x) dg(x) df(x)
X=Xm dx |x= Xm
dzf(x)_] _ 0

dx }x:xm + G(xm)[ dx
+ o0 G| ] - on

and x,, is approximately independent of the heaiing rate. According to Eq. (5).
A0, is equal to G(x,,), and the method of obtaining the activation energy from
the integral thermoanalytical curve proposed previously by the present au-
thor, is also applicable to the peak of the derivative curve. Namely:

loga = —0.4567 AE/RT,, — 2.315 + log AAE/R — log G(x,,) (22)

Thus, log g is in linear relation with 1/T,,, and the “Ozawa plot” proposed by
Shulman and Lochte [10] has wide applicability; if the reaction observed is
consistent with Eqs (1) and (2), we can estimate the activation energy of the
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reaction by using the linear dependency of the reciprocal absolute peak temper-
ature on the logarithm of the heating rate. In order to obtain a more ¢orrect
value of the activation energy, the following correction proposed by Flynn and
Wall [15] is applicable:

Elogp@ — 0.5) — log p(y + 0.5)

=4
AE. 0.4567

(23)
where AE, is the corrected activation energy and y is the average value of AE/RT.
The following equation is also derived by using Eq. (19):

In (a/T%) = —AE/RT,, + In (AR/AE) — log G(x,,) Q4

This method of obtaining the activation energy is equivalent to that proposed

by Kissinger for the DTA data, but it is applicable not to DTA but to the above-

mentioned types of thermal analysis and to wider varieties of reaction.
When the conversion follows a reaction of the n-th order:

C=x (25)
and
g(x) = (1 — )" (26)
the following equations are derived from Eq. (20):
1/e for n =1
1 — — 27
1= G {nlf(l‘”) for n # 1 @n
since
df(x)
AN
o (28)
d*(x)
= 29
dx? 0 (29)
and
dg(x) .
—(1(7 = —n(l —x)"— 30
From Eqs (20) and (28),
A0, = 1. 30N

In this case, the following two equations can also be derived from Eq. (31):
loga = —0.45674E/RT,, — 2.315 + log (A4E/R) 32)
In (a/T,>) = In (AR/AE) — AE|RT,, (33
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The latter equation holds without any approximation for reactions of the first
order.

For the volatilization of the random degradation of high polymer, the follow-
ing equation holds:

Xp — (1 —Lx,)In(1 —x,)=0 34)
The roots of the equation and the values of C,, are tabulated in Table 2, and

Eqgs (32) and (33) are also approximately applicable, since G(x,,) can be neglected
compared with the other terms.

Table 2

Conversions and fractions of bonds broken
at the peak of the derivative curve
of the random degradation of polymers

L o 1 Cp (20
2 0.7644 58.43
3 0.5606 59.04
4 0.4398 j 59.22
5 03612 | 59.29
6 0.3063 ; 59.32
7 0.2658 ‘ 59.35
8 0.2347 j 59.36

Methods of kinetic analysis

Two methods are derived from the above theoretical consideration. The one
is based on the approximate relation between the peak temperature and the
heating rate, and the other is applicable to the case when we can obtain the
conversion as well as the rate of conversion, i.e., the case when the effect of
the minor side reaction can be neglected and the integral of the rate of conversion
is equal to the conversion. In the first method, the logarithm of the heating rate
or the logarithm of the heating rafe divided by the square of the absolute peak
temperature is plotted against the reciprocal absolute peak temperature, and from
the slope of this plot we obtain the activation energy by using Eqs (22), (23)
and (24). Then, unless the conversion can be obtained, we cannot normalize
the rate with the total amount of the change, P, — P,, and since the height of
the curve is proportional to dC/dt and

dC/d@ = dC/dt - exp (AE/RT)/a (35)

the rate proportional to dC/d@ is derived. We can also calculate & by using
Eq. (6).
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The relation between dC/d®@ and O is the experimental master relation,
and the curves obtained at the different heating rates can be superimposed
on each other by converting them to the relation of dC/d® with @. The curve
thus obtained is the experimental master curve and equivalent to the generalized
isothermal rate of the process, since @ is proportional to the actual time under
the isothermal condition and is equal to the reduced time elapsed in the isothermal
process. Then dC/d@ is the reduced (or generalized) rate of the process. As men-
tioned above, we cannot always obtain dC/d@ itself but the rate proportional
to it. If we plot the logarithms of the rate reduced by @ as a function of &, the
curves obtained at the different heating rates can be superimposed on each other
by longitudinal shifts. If they cannot be superimposed on each other, the pro-
cess does not proceed by a single simple mechanism but is governed by two or
more activation energies; by this superimposition we can examine the reality
of the activation energy obtained by using the peak temperatures at several
heating rates.

The superimposed experimental master curve is compared with the similar
curve drawn theoretically for the assumed kinetics, such as Figs 5 and 6, and
the type of kinetics can be determined, if the experimental curve can be super-
imposed on one of the theoretical curves. The frequency factor, A, is obtained
by the length of the lateral shift of the superimposition.

The second method is the generalized one of the method proposed by Sharp
and Wentworth [16], and applied to the case in which both the rate of conversion
and the conversion are obtained as a function of the temperature. If we can
obtain the activation energy from the plot of the logarithm of the heating rates
against the reciprocal absolute peak temperature, we can obtain dC/d@ as a
function of C and T. The relation of dC/d® with C is also the experimental
master curve, and it is the generalized form of the relation of dC/d¢ vs. C proposed
by Simha and Wall [8] to distinguish the kinetic mechanisms. Then, we can
compare it with the theoretically obtained curve of dC/dA@ against C. Further-
more, an Arrhenius plot can be made, since for a given conversion

In (dC/df) — In (dC/dAO) = In 4 — AEJRT (36)

where the first and second terms of the left side are the experimental rate and the
rate calculated theoretically for the assumed kinetics. If the assumed kinetics
are correct, the Arrhenius: plot should be quite linear and we obtain a set of
reasonable values for the kinetic parameters.

Accuracy of the methods of obtaining the activation energy
As the linear relationship between the logarithm of the heating rate and the
reciprocal absolute peak temperature and the similar relationship between the
logarithm of the heating rate divided by the square of the absolute peak temper-

ature and the reciprocal absolute peak temperature elucidated above are based
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ig dC/dAQ —~=-

{=654 3

| | | |
) = 0 1

g AB
Fig. 7. The relation between dC/d4® and A® for the random degradation of the high
polymers with L indicated in the Figure

dC/dT, °Ie/deg
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Temperature, °K
Fig. 8. Theoretical derivative curves calculated for a first order reaction with 4 = 10% sec-!
and 4E = 60 kcal/mole; a) 0.25°/min, b) 0.5°/min, ¢} 1°/min, d) 2.5°/min, €) 5.0°/min,
f) 10°/min, g) 25°/min, h) 50°/min
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on roughly approximated formnlae, the critical examination of the methods
should be made; the derivative curve is obtained with an electronic digital com-
puter by using Eq. (16) and Eq. (8) for p(y) to a much higher approximation,
and the peak temperature is obtained to an accuracy of the 0.5th, 1st, 1.5th,
2nd and 3rd order and random degradation with L = 2, 3, 4, 5 and 6, where the
heating rate is 0.25, 0.5, 1.0, 2.5, 5.0, 10, 25 and 50°/min and where most of the

dc/dT, */deg

| —
550 600 850 700 750
Temnperature, ¢K

Fig. 9. Theoretical derivative curves calculated for the random degradation of a high poly-
mer with A = 101 sec™!, 4E = 40 kcal/mole and L = 3; a) 0.25°/min, b) 0.5°/min,
¢) 1.0°/min, d) 2.5°/min, €) 5.0°/min, f) 10°/min, g) 25°/min, h) 50°/min

40 60 80 100
kcail/mole
[ f |
20 30 o

g Ala

i

m[
14
AE 20
16—
14
10 /
a

Fig. 10. The dependency of peak temperature upon 4/a for a first order reaction with the
indicated activation energy

1000/T

|
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0.25—

| / [

1.2 13 14 18 16
1000/ T

Fig. 11. Typical plots of the logarithm of the heating rate versus the reciprocal absolute

peak temperature; a) second order reaction with 4 = 10% sec~! and AF = 80 kcal/mole;

b) first order reaction with 4 = 10" sec™ and 4E = 60 kcal/mole; c) 0.5th order reaction
with 4 = 10 sec~! and 4E = 40 kcal/mole

15
1000/T (a)

] | : ! f I fa—
12 13
1000/T (b)

Fig. 12. Typical plots of the logarithm of the heating rate versus the reciprocal absolute

peak temperature; a) the random degradation of a high polymer with 4 = 10% sec™?,

AF 2m. 40 kcal/mole and L = 6; b) the random degradation of a high polymer with 4 = 10?
sec™ly AE = 20 kcal/mole-and L = 2
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peak temperatures are in the range 500—1000 °K. Some of the curves thus
obtained are shown in Figs 8 and 9. The peak temperatures are plotted
against A/a for reactions of the first order in Fig. 10; the peak temperatures
for other types of kinetics are almost the same as those for the first order reactions.

Typical examples of plots of the logarithm of the heating rate against the
reciprocal absolute peak temperature are shown in Figs 11 and 12. The activation
energies and the frequency factors are estimated by using Eqs (32), (33) and (23),
and some of them are tabulated in Tables 3 and 4; the other results are similar
to those listed. The results are in very good agreement with each other and with
the theoretical values, and the differences between the estimated values and the
theoretical ones are due to the approximations in the utilized equations and the
precision of the calculated peak temperatures of 0.1 °K.

Discussion

As seen in Tables 3 and 4, the accuracy of the methods for the estimation
of the activation energy is high, though the approximation utilized in the methods
is a rough one. Even the frequency factor is estimated to relatively high accuracy.
But the conversions estimated at the peaks of the calculated curves are rather
different from those derived from Egs (27), (28) and (34). These differences
may be ascribed to the facts that the former methods are based on the peak
temperatures and that a small variation of the temperature causes a large varia-
tion of the conversion near the peak.

Next, we must discuss the differential curve obtained with DTA, which resem-
bles the derivative curve discussed above. The differential curve is not the
derivative curve since in DTA the heat evolved or absorbed during the process is
supplied in the following two forms:

(1) the heat flowing into or out of the sample along the temperature gradient
is different from the steady state, which appears as the difference of the differen-
tial temperature from the base line of the steady state;

(2) the heat stored or consumed in the form of the temperature gradient is
different from the steady state, which causes the tailing of the differential curve.

In other words, the difference between the differential curve and the
derivative curve is clearly shown in the fact that after the completion of the
process the temperature difference decays exponentially to the base line in
DTA [17]. Thus the height of the temperature difference from the base line is
not proportional to the rate of the process. Kissinger asserted that the height
is proportional to the rate according.to the expression that the temperature
measured is a function of the time, the position of the temperature-measurement
and the rate of conversion, but the temperature is a function of the conversion,

the rate of conversion, the time and the position as shown in the above dis-
cussion.
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Other investigators [18 —23] also postulated the approximate proportionality
between the height and the reaction rate without considering the heat flow into
the sample. However, the proportionality holds approximately only when the
second form mentioned above can be neglected, when the temperature gradient
indispensable for DTA measurement exists within material of high thermal
diffusivity and of low heat capacity. In the case of Borchardt and Daniels [18],
the temperature gradient exists within the thin layer of the glass sample cell and
the solution sample is stirred. In short, the methods of Kissinger [13], Borchardt
[19], Piloyan et al. [20], Reich [21] and Taylor et al. [23] are applicable for these
particular cases of DTA, as is clear in a recent argument {24 —26}, and if these
methods should be applied to normal cases, false results would be obtained.
Thus, these methods are generally applicable not to the differential curve but
to the derivative curve such as that obtained with DSC.

Now let us discuss the problems of the kinetic analysis of thermoanalytical
data, which have not yet been pointed out or solved. Most methods of the kinetic
analysis of thermoanalytical data proposed so far are based on particular kinetic
formulae, such as a reaction of the n-th order and the parabolic law [16]. These
methods involve the dangerous tendency to study (unjustifiably) processes of
great variety within the limited framework of the particular specialized formulae,
and to lead to false results. On the other hand, the present methods and the
method proposed previously by the author are based on the general form of
the kinetics and the general relation of the observed properties to the structure
reacting in the thermal analysis. Therefore, the methods have general applicability.
Moreover, in the course of the application of the methods, the validity of the
application of the methods to the analyzed process is examined with the experi-
mental master curve; if one can draw a smooth experimental master curve, this is
evidence of the validity. In order to obtain the real kinetic parameters, it is neces-
sary, at least to compare the kinetic analyses of the curves of the different heating
rates, as Flynn and Wall pointed out [1].

There are some reactions which consist of a few consecutive elementary reac-
tions and which proceed as a whole following one order of reaction or kinetics
such as Eq. (2) under isothermal conditions. Typical processes are depolymeriza-
ticn of high polymers [27], dehydrochlorination of polyvinyl chloride [28] and
diffusion-controlled decomposition of a solid substance [16]. For the kinetic
analysis of the thermoanalytical data of such processes we must consider the
rate of each elementary reaction; false results are obtained if the process is treated
as a whole according to the overall isothermal kinetics. However, for the depoly-
merjzation of a high polymer the treatment of the process as a whole according
to the overall isothermal kinetics may be reasonable, since the time interval
from the formation of a propagating radical to its annihilation is small compared
with the temperature-rise during the time interval; a quasi-stationary state may
exist such as the stationary state of the amount of the radical in isothermal depoly-
merization; and the amount of the radical and its kinetic chain length may be
the same as those in the isothermal process at the same temperature. The kinetic
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analysis of the curve of parallel reactions is discussed by Chatterjee [29]
only for limited cases. However, it would be very difficult and complicated to
analyse the parailel reactions in the general form.

The second point to be considered in the kinetic analysis of thermoanalytical
data is the effect of the temperature gradient within the sample. In all methods
including the present ones, the temperature is assumed to be uniform within
the sample. If the sample is heated at a higher heating rate, there exists a relatively
larger temperature gradient in the sample, and this broadens the curve. The
effect is non-linear in its nature, because the rate of the process depends on
the temperature non-linearly. Thus, the reduction of a curve deformed by the
effect of the temperature gradient to the substantial curve without temperature
gradient by using Laplace transformation and transfer function, such as is
proposed by Tateno [30], is not reasonable, since the procedure is based on
the linearity or the superimposition principle of the phenomenon.

As the effect is non-linear, it is impossible by the simple procedure to ob-
tain the substantial curve from the deformed one, and if the mathematical
procedure becomes resolved, it may probably need the thermophysical data ¢f
the reacting sample. Thus, it seems more reasonable to perform the thermal
analysis with a small amount of sample at a relatively slow heating rate in order
to diminish the effect of the temperature gradient; the effect could be detected
by tracing the experimental master curve. Another problem of the thermal analysis
of a reaction is diffusion of the volatilized products from the relatively thick layer
of the sample. The effect of the diffusion could also be checked by inspection of
the experimental master curve.

3k

In our laboratory, the mass-spectrometric thermal analysis of the degradation of high
polymers is now in progress. We shall report the results in the near future. The author acknowl-
edges the help of Mr. Kiyoshi Sakakibara and Mr. Koji Yada in the machine computation.
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RESUME — On propose deux méthodes pour déduire les paramétres cinétiques des thermo-
grammes dérivés. Elles reposent sur des formules cinétiques générales applicables aux réac-
tions correspondant 4 une seule valeur d’énergie d’activation. L’une de ces méthodes utilise
la relation linéaire entre la température du pic et la vitesse de chauffage pour estimer la valeur
de I’énergie d’activation; seule la vitesse de conversion en fonction de la température nécessite
d’étre connue. L’autre méthode demande de connaitre & la fois le taux et la vitesse de con-
version en fonction de la température, et Pon effectue le tracé de I’équation d’Arrhénius
pour le mécanisme cinétique supposé.

ZUSAMMENFASSUNG — Zwei neue Methoden zur Ermittiung von kinetischen Parametern
wurden auf Grund von derivierten Kurven vorgeschlagen. Die Verfahren benutzen all-
gemeine kinetische Formeln, die anwendbar sind fiir alle Reaktionstypen, welche von
einer einzigen Aktivierungsenergic beherrscht sind. Die eine Methode bedient sich der linea-
ren Beziehung zwischen Spitzentemperaturen und Aufheizraten zur Errechnung der Aktivie-
rungsenergie, allein in Kenntnis der Umwandlungsgeschwindigkeit als Funktion der Zeit.
Die andere Methode bendtigt die Kenntnis des Umwandlungsgrades und der Umwandlungs-
geschwindigkeit als Funktion der Temperatur und ermittelt die Arrhenius’sche Gleichung
fiir den vorausgesetzten kinetischen Mechanismus.

Pestome. — OIACAHO [ABA METOAR TOJIyYEHHS KMHETHYECKHX MApaMeTPOB IO JaHHbIM Iudde-
peHIHAIBLHON KpuBOi. MeToapl OcHOBaHBI Ha 061Iell hopMe KNHETHIECKHX GOPMYIT ¥ HX MOXKHO
MPUMEHATE Ul Peakuwii OOINEro TUMa, HANPABIISIEMBIX GAWHCTBEHHON JHEPIMed AKTUBALWY.
B 0JHOM M3 3THX METOMAOB XJIsi pPACUETa DHEPTHM aKTHBAIHHN MCHOJIB3YETCH JTHHEHHOE COOTHO-
LICHAEC MEXIY TeMIEepaTypoil NHKOB H CKODOCTAMH HarpeBa, M TakuMm obpasoM HeoOXommma
TOJILKO MHGOPMAIHS O 3aBHCHMOCTH CKOPOCTH IIpeBpallieHAs OT TeMIEpaTypEL.

Ipyroi meton Tpebyer uudopManuu O NPEBPAINCHAM W O 3aBUCHMOCTH CKOPOCTH HpeBpa-
LIEHHA OT TEMIEPATYPH K rpaduk AppeHryca IOCTPOCH HO UPEIIIOT0KEHHOMY KHHETHYECKOMY
MeXaHU3MY.
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