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Two methods of obtaining kinetic parameiers from derivative thermoanalytical 
curves are proposed. The methods are based on the general form of kinetic formulae and 
are applicable to general types of reactions governed by a single activation energy. One 
method utilizes the linear relation between peak temperature and heating rate in order 
to estimate the activation energy, and only the information of the rate of conversion 
versus the temperature is necessary. The other method needs the information of both 
the conversion and the rate of conversion versus the temperature, and the Arrhenius 
plot is made for an assumed kinetic mecha!aism, 

Various types of thermal analysis have been applied in almost all fields of 
material research. The thermoanalytical method, in which the properties of a 
sample heated at a constant rate of heating are observed continuously, is an 
effective method when the thermal response time is large compared with the rate 
of the process and considerable change occurs during the period of heating the 
sample up ~o ~the desired temperature in an isothermal measurement. For kinetic 
investigation of the pyrolysis of  a substance, thermogravimetry has been utilized 
mainly, and many methods of obtaining kinetic parameters from thermogravi- 
metric data have been proposed. These have been thoroughly reviewed by Flynn 
and Wall [1]. 

Recently mass-spectrometric thermal analysis (MTA) was proposed [2] and 
has been applied to the thermal degradation of polymeric materials [ 3 - 6 ] .  
This technique has some advantages over thermogravimetry since the volatilized 
products can be identified by mass-spectroscopy and the rate of the volatilization 
of eael~ 'product is also recorded simultaneously. Thus, we can obtain kinetic infor- 
mation as well as a knowledge of the products, and if the reaction proceeds in 
parallel reactions, these can be distinguished by identification of the products; 
this is not possible with thermogravimetry. 

However, a method of kinetic analysis of such derivative types of thermoana- 
lytical curves as are obtained by M T A  and differential scanning calorimetry 
(DSC) has not yet been proposed. Methods of kinetic analysis using data of  both 
the conversion and the rate of  conversion are reported for thermogravimetry, 
but these are only applicable to reactions of the n-th order, and hence can- 
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not be applied to high polymers, some of which are decomposed by other mech- 
anisms such as random degradation, in which the rate of scission is followed 
by a first order reaction. The scission occurs at random points of the main- 
chain in equal probability, and the rates of volatilization of the products are 
quite different from that of the first-order reaction. Moreover, these methods 
need data of  both conversion and rate of conversion In a previous paper [7], 
the author proposed a method of kinetic analysis of thermogravimetric data which 
has wide applicability and needs only data of conversion. However, although 
we can observe the rate of conversion by MTA and DSC, integration of  the 
derivative curve is not always equal to the conversion, because of the presence 
of an additional minor reaction, especially when the latter becomes dominant 
as the temperature is raised. 

In the present paper, methods of kinetic analysis of derivative curves are 
proposed which are also applicable to the above-mentioned complex process. 
Some of the methods are examined by using the derivative curve calculated 
theoretically by machine. 

Theoretical considerations 

In thermal analysis, properties of the sample, P, or the rate of change of the 
properties, dP/dt (or dP/dT), are recorded as a function of temperature, T, or 
time, t. In order to estimate the kinetic parameters with thermal analysis, the 
properties measured should be independent of the temperature and the exper- 
imental time scale, and depend only on the structural quantity of the sample, x. 
Hence, properties such as viscoelastic or dielectric properties are not suitable 
for this purpose. The conversion, C, which is equal to ( P -  Po)/(P~ -Po) ,  is 
a function of x: 

C = f(x)  (1) 

In thermal analysis ,~e cannot utilize the observations of the change of other 
properties, such as volume in dynamic dilatometry and relative modulus in 
torsional braid analysis, since the volume and modulus depend on the tempera- 
ture and the experimental time scale, as well as on the structure. The kinetic 
parameters cannot be obtained unless we can obtain or derive the structural 
quantity, x, from these measurements. The modulus in the rubbery region may 
be utilized for this purpose, since the ratio of the modulus to the temperature 
depends only on the cross-linking density of the polymer. 

The structural quantity is assumed to change following ordinary reaction 
kinetics : 

dx/dt = A exp ( -  AE/RT) g(x) (2) 

where A, AE and R are the frequency factor, the activation energy and the gas 
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constant, respectively. The above assumption may generally hold. The tempera- 
ture changes linearly: 

T = r o + at (3) 

where To and a are the initial temperature and the rate of heating (or cooling), 
respectively. 

In the previous paper [7], the author derived C as a function of T: 

x 

f g(x)dX _ A j exp ( -  AE/RT)dt (4) 

0 0 

G(x)  = A o (5) 

where G(x) equals J" dx/g(x) and O was defined as the reduced time [7]. When 
0 

the temperature is increased at a constant rate and the reaction barely occurs 
at the initial temperature, O is given by the following equation: 

O = a-R- p (6) 

where the p-function is given by: 
Y 

f exp ( -  y) P(Y) - ~ y~ dy (7) 
0 

If y is larger than 15, then the following approximation can be applied: 

p(y)_ e x p ( - y ) [  1 1 2 
y y + 1 (y + 1)(y + 2) + (-y q2i) (y + 2) (y+-3)  

4 
( y +  1 ) ( y +  2 ) ( y +  3 ) ( y + 4 )  

14 
+ ( y ~  1) (y -+ 2) (y -I- 3) (y + 4) (y + 5) 

38 
( y +  1 ) ( y +  2 ) ( y +  3 ) ( y + 4 ) ( y +  5 ) ( y +  6) 

216 + - -  
( y +  1 ) ( y +  2 ) ( y +  3 ) ( y + 4 ) ( y +  5 ) ( y +  6 ) ( y +  7) 

_ 600 ) 
( y +  1)(y + 2 ) ( y +  3 ) ( y + 4 ) 0 , +  5 ) ( y +  6 ) ( y +  7 ) ( y +  8) 

(y ~ 15) (8) 
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and 

log p(y) = - 2.315 - 0.4567y (9) 

The approximation may be applicable to the ordinary reaction, since y is usually 
greater than 15. 

_ t00 

80/- 

20 

0I  I r 
-2 -1 0 1 2 

tg AE) 
- " "  i " -  

Fig. 1. The relation between the conversion, C, and AO for the reactions of the n-th order; 
a) 0th, b) 0.Sth, c) 1st, d) 1.Sth, e) 2nd, f)3rd 

From Eqs (1) and (5), we can derive the relation between P and AO, because 
the relation between C and 9(x) is equal to the relation between C and AO. 
The relations between C and AO are dependent only on the functions f and 9, 
i.e. the mechanism of the reaction and the relation of P with x, and they can be 
theoretically derived. Some of the typical relations are shown in Figs 1" and 2. 
For  the weight change in the random degradation of a high polymer, C is given 
by Simha and Wall [8]: 

[ ( N -  1 ) ( L -  1)] (10) 
1 - C =  ( 1  - x) L-1 1 + x N 

AE ) (1 - x) (11) dx _ A exp - R T  
dt 

* S imi l a r  c u r v e s  a re  s h o w n  in  t h e  p r e v i o u s  p a p e r .  H o w e v e r ,  t h e  p r e s e n t  g r a p h s  a re  r ev i sed  

DrieS. 
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where x, N and L are the fraction of bonds broken, the initial degree of poly- 
merization and the least length of the polymer not volatilized, respectively. The 
right side of Eq. (10) is approximately equal to (1 -x)(L-1)[1 + ( L -  1)x],  
since L is negligibly small compared with N. The relations between C and x are 

80 

S0 

40 

20 

-2 - I  1 
Ig Ae 

Fig. 2. The relation between the conversion, C, and A O for the random degradation of 
high polymers; from right to left, L = 2, 3, 4, 5, 6, 7 and 8 

obtained by resolving the equation for a given conversion by using Newton's 
method of approximation; they are shown in Fig. 3. Utilizing the relations in 
Fig. 3, the curves in Fig. 2 can be drawn. Thus, we can obtain the theoretical 
integral types of curve for given values of the kinetic parameters of A and 
A E  and a given mechanism of f and g, by using these theoretical relations and 
Zq. (8). 

On the other hand, the similar theoretical relations of derivative type are also 
derived : 

dC df(x) dx 
= - -  ( 1 2 )  

d A O  d x  d A O  

df(x) dx dt 
d x  " d t  " d A O  (13) 

= g ( x ) - -  
dr(x) 

dx (14) 
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because 

dAO/dt = A exp ( -  AE/RT) (15) 

Thus, the theoretical relations between dC/dAO and C are derived from Eqs (i) 
and (14). The theoretical relations between dC/dAO and AO are derived from 
Eqs (5) and (14). These relations are the theoretical ones depending only on the 
functions f and g. 

The derivative curves are similarly obtained for a particular set of the kinetic 
parameters, because 

dC dC dAO ( A E ]  df(x) (16) 
d T =  dAO dT - A e x p [ ) -  )27" 9(x) dx 

• 

i 
1'0 f 

0.8 " -  
i 
r- 
L 

o+ 

0.4~ 

0 0.2 04 0.6 0.8 1,0 

C 

Fig. 3. The relation between C and x for the random degradation of high polymers 

/ 

For the random degradation of high polymers, the weight changes are shown 
above, and the rates of weight loss can be calculated by using the above equa.. 
tions, but the theoretical relations of the volatilization rate of each product 
:must be known, since in MTA and evolved gas analysis one observes not 
the rate of the total weight change but the volatilization rates of the individual 
products. 

Now let us consider the probability of the formation of each product. For the 
random degradation of high polymers, the products of the repeating unit from 
one to L - 1 are formed. The probabilities of the formation of each product 
from a polymer larger than (2L - 1)-mer are equal to each other, since the i-th 
boI~d from the end should be broken for the volatilization of  the i-mer (i < L - 1), 
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and the number of  such bonds to be broken is two for each product. The prob- 
abilities of  formation of  each product from the j-mer (L < j  < 2L - 1) must 
be considered. A simple approach is made after Mejzler et al. [9]. If the i-th bond 

G) 
i 

"i.O ~ ,  

0.8 �9 k~ 

O.E 

n 
0.4 

0.2 

ol 
0 0.2 0.4 0.6 0.8 lD 

C 

Fig. 4. The relation between dC/dA@ and C for the reaction of the order indicated in the 
Figure 

i 
~, 2.0 ]-- 

1.0 

0 0.2 0.4 0.6 0.8 1.0 
s 

Fig. 5. The relation between dC/dA@ and C for the random degradation of high polymers 
with L indicated in the Figure 
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from one end is broken, the i-mer and ( j  - i)-mer are produced. I f  the i-th bond 
from the other end is broken, the situation is the same. I f  the i-th bond from 
the ends of  the (2i)-mer is broken, two molecules of the i-mer are formed by the 
breaking of one bond. Thus, the number of ways of producing i-mer from j-mer 
is independent of i and equal to 2. As the probability of breaking is equal for all 
bonds, the probabilities of formation of the volatilized products are equal to 
each other, and the conversion of volatilized products corresponds to the weight 
change of Eq. (9). 

T 
(D 

o~ 

0 O.5 

n= 0.5 

�9 [ 

0 1 
Ig Ae 

Fig. 6. The relation between dC/dA@ and .4@ for the reaction of the order indicated in 
the Figure 

Hence, dC/dAO can be derived for the volatilization rate in the random 
degradation of high polymers. 

For  some of the typical cases, dC/dAO is shown as functions of AO and C 
in Figs 3, 4, 5 and 6 and in Table 1. 

Now let us consider the peak of the curve. Shulman and Lochte [10] 
suggested that the logarithm of the heating rate is in a linear relation with the 
reciprocal value of the peak absolute temperature in first order reactions and that 
the activation energy can be estimated from the slope. This was based on two 
facts: the conversion at the peak is almost constant and independent of the heat- 
ing rate, as shown by Horowitz and Metzger [11]; and the logarithm of the 
heating rate is in a linear relation with the reciprocal absolute temperature for 
the given conversion as suggested by the author [7]. 
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On the other hand, Murray and White [12] pointed out another linear rela- 
tionship between the logarithm of the heating rate divided by the square of the 
peak absolute temperature and the reciprocal peak absolute temperature for first 
order reactions. Kissinger [13] suggested that the linear relationship is also appli- 
cable to reactions of different order for differential thermal analysis (DTA) data. 

However, the above-mentioned relationships hold for wider varieties of reac- 
tion, as elucidated below, but the relations cannot generally be applied for 
DTA data, as seen in the discussion. 

At the peak: 

then: 

F d,,(x) j A 
RT2m L dx J~=~m + a exp 

d2C 
= 0 (17) 

dT 2 

L dx _1 . . . .  L dx U~=.,,,, 

[ d2Z(x)] 
+ L ~ b : ~  = o (18) 

where suffix m denotes the peak. If the following approximation is made (the 
approximation is examined by Doyle [14]): 

then: 

p(y)  = exp (_y)/y '2 (19) 

ART2m exp( --AEI 
a A ~  - RT~] = AOm = G(xm) (20) 

Thus, Eq. (18) reduces to the following equation containing only xm: 

[ d.f(x)] + G(~,n)[dr l [as(x)] 
dx  J = ,~ L dx  j . . . . .  [ dx  jx=xm 

q- g(xm) G(xm) ~ - x 2  - = 0 ( 2 1 )  
X=Xn  

and x,, is approximately independent of the heating rate. According to Eq. (5), 
AOm is equal to G(xm), and the method of obtaining the activation energy from 
the integral thermoanalytical curve proposed previously by the present au- 
thor, is also applicable to the peak of the derivative curve. Namely: 

log a = -0.4567 AE/RTm - 2.315 + log A A E / R  - log G(xm) (22) 

Thus, log a is in linear relation with 1/T,,, and the "Ozawa plot" proposed by 
Shutman and Lochte [10] has wide applicability; if the reaction observed is 
consistent with Eqs (1) and (2), we can estimate the activation energy of the 
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reaction by using the linear dependency of the reciprocal absolute peak temper- 
ature on the logarithm of the heating rate. In order to obtain a more eorrect 
value of the activation energy, the following correction proposed by Flynn and 
Wall [15] is applicable: 

A E l o g p ( - y  - 0.5) - logp@ + 0.5) 
AEc 0.4567 (23) 

where AEc is the corrected activation energy and j~ is the average value of A E / R T .  
The following equation is also derived by using Eq. (19): 

In (a/TZm) = - A E / R T  m - t - In  ( A R / A E )  - log G(xm) (24) 

This method of obtaining the activation energy is equivalent to that proposed 
by Kissinger for the DTA data, but it is applicable not to DTA but to the above- 
mentioned types of thermal analysis and to wider varieties of reaction. 

When the conversion follows a reaction of the n-th order: 

and 

C = x  (25) 

g(x )  = (1 - x)"  

the following equations are derived from Eq. (20): 

I I / e  for  n = 1 
1 - C m = [nZj(l_. ) for n ~ 1 

since 

and 

From Eqs (20) and (28), 

df(x) 
- 1  

dx 

dSf(x) 
- 0  

dx 2 

dg(x) 

dx 

(26) 

(27) 

(28) 

(29) 

- n(1  - x )  "-~ ( 3 0 )  

A O m  = 1. (31) 

In this case, the following two equations can also be derived from Eq. (3i): 

log a = - 0 . 4 5 6 7 A E / R T  m - 2.315 + log ( A A E / R )  (32) 

In (a/Tm 2) = in (AR/AE) - A E / R T m  (33) 
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The latter equation holds without any approximation for reactions of  the first 
order. 

For  the volatilization of the random degradation of high polymer, the follow, 
ing equation holds: 

x m - (1 - Lxm)In (1 - x,~) = 0 (34) 

The roots of the equation and the values of  C m are tabulated in Table 2, and 
Eqs (32) and (33) are also approximately applicable, since G(x~) can be neglected 
compared with the other terms. 

Table 2 

Conversions and fractions of bonds broken 
at the peak of the derivative curve 

of the random degradation of polymers 

L x~ C.~(%) 

0.7644 58.43 
0.5606 59.04 
0.4398 59.22 
0.3612 59.29 
0.3063 59.32 
0.2658 59.35 
0.2347 59.36 

Methods of kinetic analysis 

Two methods are derived f rom the above theoretical consideration. The one 
is based on the approximate relation between the peak temperature and the 
heating rate, and the other is applicable to the case when we can obtain the 
conversion as well as the rate of  conversion, i.e., the case when the effect of 
the minor side reaction can be neglected and the integral of  the rate of conversion 
is equal to the conversion. In the first method, the logarithm of the heating rate 
~)r the logarithm of the heating ra~e divided by the square of the absolute peak 
temperature is plotted against the reciprocal absolute peak temperature, and from 
the slope of this plot we obtain the activation energy by using Eqs (22), (23) 
and (24). Then, unless the conversion can be obtained, we cannot normalize 
the rate with the total amount  of  the change, Po~ - P0, and since the height of  
the curve is proport ional  to dC/dt and 

dC/dO = dC/dt - exp  (AE/RT)/a (35) 

the rate proport ional  to dC/dO is derived. We can also calculate O by using 
Eq, (6). 

~l Thermal 4nal. 2; 1970 
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The relation between dC/dO and O is the experimental master relation, 
and the curves obtained at the different heating rates can be superimposed 
on each other by converting them to the relation of dC/dO with O. The curve 
thus obtained is the experimental master curve and equivalent to the generalized 
isothermal rate of the process, since O is proportional to the actual time under 
the isothermal condition and is equal to the reduced time elapsed in the isothermal 
process. Then dC/dO is the reduced (or generalized) rate of the process. As men- 
tioned above, we cannot always obtain dC/dO itself but the rate proportional 
to it. If  we plot the logarithms of the rate reduced by O as a function of O, the 
curves obtained at the different heating rates can be superimposed on each other 
by longitudinal shifts. If they cannot be superimposed on each other, the pro- 
cess does not proceed by a single simple mechanism but is governed by two or 
more activation energies; by this superimposition we can examine the reality 
of the activation energy obtained by using the peak temperatures at several 
heating rates. 

The superimposed experimental master curve is compared with the similar 
curve drawn theoretically for the assumed kinetics, such as Figs 5 and 6, and 
the type of kinetics can be determined, if the experimental curve can be super- 
imposed on one of the theoretical curves. The frequency factor, A, is obtained 
by the length of the lateral shift of the superimposition. 

The :second method is the generalized one of the method proposed by Sharp 
and Wentworth [16], and applied to the case in which both the rate of conversion 
and the conversion are obtained as a function of the temperature. If  we can 
obtain the activation energy from the plot of the logarithm of the heating rates 
against the reciprocal absolute peak temperature, we can obtain dC/dO as a 
function of C and T. The relation of dC/dO with C is also the experimental 
master curve, and it is the generalized form of the relation of dC/dt vs. C proposed 
by Simha and Wall [8] to distinguish the kinetic mechanisms. Then, we can 
compare it with the theoretically obtained curve of dC/dAO against C. Further- 
more, an Arrhenius pl0t can be made, since for a given conversion 

In (dC/dt) - In (dC/dAO) = In A - AE/RT (36) 

where the first and second terms of the left side are the experimental rate and the 
rate calculated theoretica!ly for the assumed kinetics. If  the assumed kinetics 
are correct, the Arrhenius plot should  be quite linear and we obtain a set of 
reasonable values for the kinetic parameters. 

Accuracy of the methods of obtaining the activation energy 

As the linear relationship between the logarithm of the heating rate and the 
reciprocal absolute peak temperature and the similar relationship between the 
logarithm of the heating rate divided by the Square of the absolute peak temper- 
ature and the reciprocal absolute peak temperature elucidated above are based 
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I 

i L=6 5 z4 3 

-2 -1 0 1 

Fig. 7. The relation between dC/dAt9 and AO for the random degradation of the high 
polymers with L indicated in the Figure 

i 

~~ I 1.5 

1.0-- 

45 

0 
6O0 
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c d 

700 8OO 

Temperature, ~ 

Fig. 8. Theoretical derivative curves calculated for a first order reaction with A = l01~ sec-1 
and JE = 60 kcal/mole; a) 0.25~ b) 0.5~ c) l~ d) 2.5~ e) 5.0~ 

f) 10~ g) 25~ h) 50~ 
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on roughly approximated formulae, the critical examination of the method~ 
should  be made;  the derivative curve is obtained with an electronic digital c o m -  
puter by using Eq. (16) and Eq. (8) for p(y) to a m u c h  higher approximat ion,  
and the peak  temperature is obtained to an accuracy o f  the 0.5th, 1st, 1.5th, 
2nd and 3rd order and r a n d o m  degradation with L -- 2, 3, 4, 5 and 6, where  the 
heating rate is 0.25, 0.5, 1.0, 2.5, 5.0, 10, 25 and 50~ and where  mos t  o f  the 

~3 .0  -~ 

~ a b =-.,. 

c d r -  
e f 

2 . C -  

1,0 

D,,,,- 
550 600 BSD 700 750 

Temper~iure~ =K 

Fig. 9. Theoreticat derivative curves calcutated for the random degradation of a high poly- 
mer with A = 101~ sec -1, d E =  40 kcal/mole and L = 3; a) 0.25~ b) 0.5~ 

c) 1.0~ d) 2.5~ e) 5.0~ f) 10~ g) 25~ h) 50~ 

20 

18 

il 
10 2g 

e 

i I , . -  
30 40 

|g A l a  

Fig. 10. The dependency of peak temperature upon A/a for a first order reaction with the 
indicated activation energy 
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Fig. 11. Typica[  p lots  o f  the  l o g a r i t h m  o f  the  hea t i ng  ra te  ve r sus  t he  rec iprocal  ab so lu t e  
peak  t e m p e r a t u r e ;  a) s econd  order  r eac t ion  wi th  A = 102~ sec -1  a n d  A E  = 80 kca l /mole ;  
b) first o rder  r eac t ion  wi th  A = 10 t~ sec - t  a n d  d E  = 60 kca l /mole ;  c) 0 .5 th  o rde r  r eac t ion  

wi th  A = 10 l~ sec -1  a n d  A E  = 40 kca l /mole  

~ i 
5 . 0 -  

2.5 

F r f - - , .  
1.2 1.3 1.4 1.5 

IO00/T (o )  

I i I _ _ _  , ! , I , - - D . , . - -  
~.0 ~.~ ~,.2 ~.3 

IO001T (b) 

Fig. 12. Typica l  p lots  o f  the  l o g a r i t h m  o f  the  hea t ing  ra te  ve r sus  the  rec iprocal  abso lu t e  
peak  t e m p e r a t u r e ;  a) the  r a n d o m  deg rada t i on  o f  a h igh  po lymer  wi th  A = 10 l~ see -1, 
_4E~,~.40 kca] /mole  a n d  L = 6 ;  b) the  r a n d o m  d e g r a d a t i o n  o f  a h igh  p o l y m e r  wi th  A = 10 e 

sec -1 ;  A E =  2 0  kca l /mole  a n d  L = 2 

J. Thermal Anal. 2, 1970 
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peak temperatures are in the range 500-1000 ~ Some of the curves thus 
obtained are shown in Figs 8 and 9. The peak temperatures are plotted 
against A/a for reactions of the first order in Fig. 10; the peak temperatures 
for other types of kinetics are almost the same as those for the first order reactions. 

Typical examples of plots of the logarithm of the heating rate against the 
reciprocal absolute peak temperature are shown in Figs 11 and 12. The activation 
energies and the frequency factors are estimated by using Eqs (32), (33) and (23), 
and some of them are tabulated in Tables 3 and 4; the other results are similar 
to those listed. The results are in very good agreement with each other and with 
the theoretical values, and the differences between the estimated values and the 
theoretical ones are due to the approximations in the utilized equations and the 
precision of the calculated peak temperatures of 0.1 ~ 

Discussion 

As seen in Tables 3 and 4, the accuracy of the methods for the estimation 
of the activation energy is high, though the approximation utilized in the methods 
is a rough one. Even the frequency factor is estimated to relatively high accuracy. 
But the conversions estimated at the peaks of the calculated curves are rather 
different from those derived from Eqs (27), (28) and (34). These differences 
may be ascribed to the facts that the former methods are based on the peak 
temperatures and that a small variation of  the temperature causes a large varia- 
tion of the conversion near the peak. 

Next, we must discuss the differential curve obtained with DTA, which resem- 
bles the derivative curve discussed above. The differential curve is not the 
derivative curve since in DTA the heat evolved or absorbed during the process is 
supplied ill the following two forms: 

(1) the heat flowing into or out of the sample along the temperature gradient 
is different from the steady state, which appears as the difference of the differen- 
tial temperature from the base line of  the steady state; 

(2) the heat stored or consumed in the form of the temperature gradient is 
different from the steady state, which causes the tailing of the differential curve. 

In other words, the difference between the differential curve and the 
derivative curve is clearly shown in the fact that after the completion of the 
process the temperature difference decays exponentially to the base line in 
DTA [17]. Thus the height of the temperature difference from the base line is 
not proportional to the rate of the process. Kissinger asserted that the height 
is proportional to the rate according: to the expression that the temperature 
measured is a function of the time, the position of the temperature-measurement 
and the rate of conversion, but the temperature is a function of the conversion, 
the rate of conversion, the time and the position as shown in the above dis- 
cussion. 

3. Thermal Anal. 2, 1970 
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Other investigators [18 -23]  also postulated the approximate proportionality 
between the height and the reaction rate without considering the heat flow into 
the sample. However, the proportionality holds approximately only when the 
second form mentioned above can be neglected, when the temperature gradient 
indispensable for DTA measurement exists within material of high thermal 
diffusivity and of low heat capacity. In the case of Borchardt and Daniels [18], 
the temperature gradient exists within the thin layer of the glass sample cell and 
the solution sample is stirred. In short, the methods of Kissinger [13], Borchardt 
[19], Piloyan et al. [20], Reich [21] and Taylor et al. [23] are applicable for these 
particular cases of DTA, as is clear in a recent argument [24-26] ,  and if these 
methods should be applied to normal cases, false results would be obtained. 
Thus, these methods are generally applicable not to the differential curve but 
to the derivative curve such as that obtained with DSC. 

Now let us discuss the problems of the kinetic analysis of thermoanalytical 
data, which have not yet been pointed out or solved. Most methods of the kinetic 
analysis of thermoanalytical data proposed so far are based on particular kinetic 
formulae, such as a reaction of the n-th order and the parabolic law [16]. These 
methods involve the dangerous tendency to study (unjustifiably) processes of 
great variety within the limited framework of the particular specialized formulae, 
and to lead to false results. On the other hand, the present methods and the 
method proposed previously by the author are based on the general form of 
the kil~etics and the general relation of the observed properties to the structure 
reacting in the thermal analysis. Therefore, the methods have general applicability. 
Moreover, in the course of the application of the methods, the validity of the 
application of the methods to the analyzed process is examined with the experi- 
mental master curve; if one can draw a smooth experimental master curve, this is 
evidence of the validity. In order to obtain the real kinetic parameters, it is neces- 
sary, at least to compare the kinetic analyses of the curves of the different heating 
rates, as Flynn and Wall pointed out [1]. 

There are some reactions which consist of a few consecutive elementary reac- 
tions and which proceed as a whole following one order of reaction or kinetics 
such as Eq. (2) under isothermal conditions. Typical processes are depolymeriza- 
tion of high polymers [27], dehydrochlorination of polyvinyl chloride [28] and 
diffusion-controlled decomposition of a solid substance [16]. For  the kinetic 
analysis of the thermoanalytical data of such processes we must consider the 
rate of each elementary reaction; false results are obtained if the process is treated 
as a whole according to the overall isothermal kinetics. However, for the depoly- 
merization of a high polymer the treatment of the process as a whole according 
to the overall isothermal kinetics may be reasonable, since the time interval 
from the formation of a propagating radical to its annihilation is small compared 
with the temperature-rise during the time interval; a quasi-stationary state may 
exist such as the stationary state of the amount of the radical in isothermal depoly- 
merization; and the amount  of the radical and its kinetic chain length may be 
the same as those in the isothermal process at the same temperature. The kinetic 
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analysis of the curve of parallel reactions is discussed by Chatterjee [29] 
only for limited cases. However, it would be very difficult and complicated to 
analyse the parallel reactions in the general form. 

The second point to be considered in the kinetic analysis of thermoanalytical 
data is the effect of the temperature gradient within the sample. In all methods 
including the present ones, the temperature is assumed to be uniform within 
the sample. If the sample is heated at a higher heating rate, there exists a relatively 
larger temperature gradient in the sample, and this broadens the curve. The 
effect is non-linear in its nature, because the rate of the process depends on 
the temperature non-linearly. Thus, the reduction of a curve deformed by the 
effect of the temperature gradient to the substantial curve without temperature 
gradient by using Laplace transformation and transfer function, such as is 
proposed by Tateno [30], is not reasonable, since the procedure is based on 
the linearity or the superimposition principle of the phenomenon. 

As the effect is non-linear, it is impossible by the simple procedure to ob- 
tain the substantial curve from the deformed one, and if the mathematical 
procedure becomes resolved, it may probably need the thermophysical data cf 
the reacting sample. Thus, it seems more reasonable to perform the thermal 
analysis with a small amount of sample at a relatively slow heating rate in order 
to diminish the effect of the temperature gradient; the effect could be detected 
by tracing the experimental master curve. Another problem of the thermal analysis 
of a reaction is diffusion of the volatilized products from the relatively thick layer 
of the sample. The effect of the diffusion could also be checked by inspection of 
the experimental master curve. 

In our laboratory,  the mass-spectrometric thermal  analysis of the degradat ion of high 
polymers is now in progress. We shall report  the results in the near future. The author  acknowl- 
edges the help of Mr. Kiyoshi Sakakibara  and Mr. Koji  Yada in the machine computat ion.  
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RisuM~ -- On propose deux m6thodes pour d6duire les param&res cin6tiques des thermo- 
grammes d6rivds. Elles reposent sur des formules cindtiques g6ndrales applicables aux r6ac- 
tions correspondant  5. une seule valeur d'6nergie d 'activation.  L 'une  de ces m6thodes utilise 
la relat ion lin6aire entre la temp6rature du pic et la vitesse de chauffage pour estimer la valeur 
de l'6nergie d 'act ivat ion;  seule la vitesse de conversion en fonction de la temp6rature n6cessite 
d 'etre connue. L 'aut re  m6thode demande de conna~tre ~t la lois le taux et la vitesse de con- 
version en fonct ion de la temp6rature, et l 'on effectue le trac6 de l '6quat ion d 'Arrh6nius  
pour le mdcanisme cin6tique suppos6. 

ZUSAMMENFASSUNG - -  Zwei neue Methoden zur Ermit t lung yon kinetischen Parametern  
wurden auf  Grund  von derivierten Kurven vorgeschlagen. Die Verfahren benutzen all- 
gemeine kinetische Formeln,  die anwendbar  sind ftir alle Reaktionstypen,  welche von 
einer einzigen Aktivierungsenergie beherrscht  sind. Die eine Methode bedient sich der linea- 
ren Beziehung zwischen Spitzentemperaturen und  Aufheizraten zur Errechnung der Aktivie- 
rungsenergie, allein in Kenntnis  der Umwandlungsgeschwindigkeit  als Funkt ion  der Zeit. 
Die andere Methode ben6tigt  die Kenntnis  des Umwandlungsgrades und der Umwandlungs-  
geschwindigkeit als Funkt ion  der Temperatur  und  ermittelt die Arrhenius 'sche Gleichung 
ftir den vorausgesetzten kinetischen Mechanismus. 

Pe3roMe.  - -  OrH~ICaHO )lBa MeTOjIa IIOJIyqeHH~ K!,ItfeTVltIeCKItX n a p a M e T p o B  n o  l laHnblM jIHqbqbe- 
peFiitnaJibHO~ KpIIBOffI. MeTo~bI  OCHOBflHbI n a  o6me~ ~ o p M e  KI4HeTI~I~IeCKHX dpopMy3I rI fiX MOXHO 

npHMeH21Tb ~IdI~t peaKnl~fi o 6 m e r o  TtIna,  HanpaBnaeMblX e~(I;n-ICTBeHHO/~ a r l ep r r i e~  aKTnBaI~nH. 
B O~HOM 1"I3 3THX MeTO~IOB ,/I.rD[ p a c q e T a  9Heprnr I  aKTnBaIIH~I Hcno2763yeTc~ JirlHe]~Hoe COOTnO- 

t t teHne Me~K/Iy T e M n e p a T y p o ~  rIHKOB 1/1 CKOpOCT~Mn H a r p e B a ,  i,i TaKrlM o 6 p a 3 o M  n e o 6 x o J I n M a  
TO~r~KO nndpopMat~rlfl O 3aBHeHMOCTIt cKopocTI, I npeBpall~eHri~t OT TeMnepaTypt , i .  

~pyrofi  MeTO,!I Tpe6yeT rluqbopMaImn o npeBpallleHnrt I4 o 3aBHCItMOCTH CKOpOCTH npeBpa- 
meHHa OT TeMnepaTypt,i n rpaqbrlK Appenrlyca nocTpoen nO npejinoJiox~eHrlOMy rrmeTnqeCKoMy 
MeXaHII3My. 
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